ENERGY SAVINGS FROM AIR SEALING LARGE BUILDINGS

Energy Design Conference & Expo, Duluth, MN

Dave Bohac P.E.

Director of Research

Continuing Education Credit Information

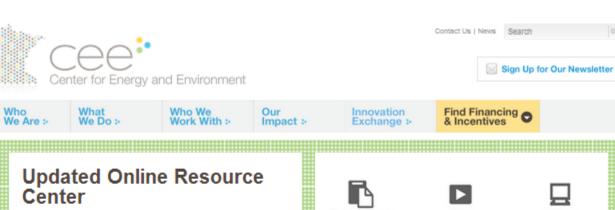
 In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying 1.5 hours of credit toward Building Officials and Residential Contractors continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

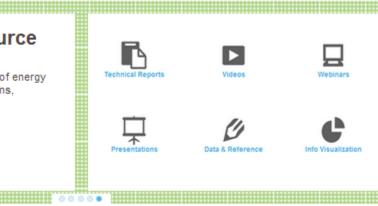
Acknowledgements

This project was supported in part by a grant from the Minnesota Department of Commerce, Division of Energy Resources through a Conservation Applied Research and Development (CARD) program



What we do

- Program Design and Delivery
- Lending Center
- Engineering Services
- Innovation Exchange
 - Research
 - Education and Outreach
- Public Policy



Browse the Innovation Exchange's library of energy tools for technical reports, info visualizations, animations, and more!

Learn More

From The Blog

See All Posts

News

See All News

Featured Staff

See All Staff

Electric Thermal Storage vs. Heat Pump Water Heaters

Which residential water heating technology is best for meeting electricity energy saving goals? It will depend if the goal is reducing total consumption or lowering peak demand.

Read More

CEE Housing Solutions Home Sells

November 4, 2013 This past Friday, November 1st, the CEE Housing Solutions home in Richfield sold.

Read More

Brenda Yaritz Senior Loan Officer Full Bio

CEE Staff Member Presents on Energy Audits and Retro-Commissioning Webinar

October 28, 2013 Chris is presenting on the outcomes and benefits of PBEEEP, Minnesota's Public Building Retro-Commissioning Program.

Read More

Project Team

- Center for Energy and Environment
 - Jim Fitzgerald
 - Martha Hewett
 - Andrew Lutz
 - Kirk Kholehma
- Air Barrier Solutions
 - Larry Harmon
- The Energy Conservatory
 - Gary Nelson
 - Paul Morin
 - Peter Burns

Air Leakage Test Staff: CEE - Alex Haynor, Jerry Kimmen, Joel Lafontaine, Dan May, Erik Moe, Tom Prebich, and Isaac Smith

Bruce Stahlberg of Affordable Energy Solutions

Large Building Tightness Specification

 Measure the air flow rate needed to pressurize & depressurize the building by 75Pa (0.3 in. wc.)

 Divide by the building envelope area – typically the exterior walls + roof + floor (6 sides)

Results from 387 US C&I buildings

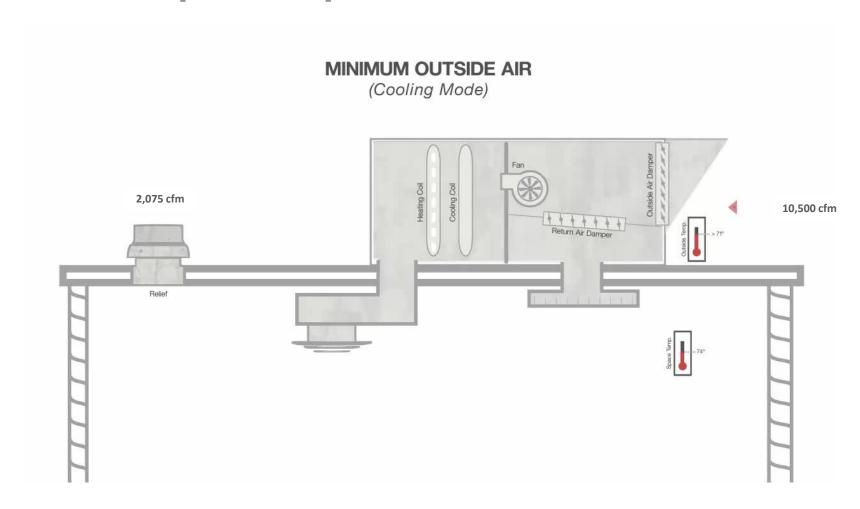
 \circ Average = 0.72 cfm/ft²

o Range 0.03 – 4.3 cfm/ft²

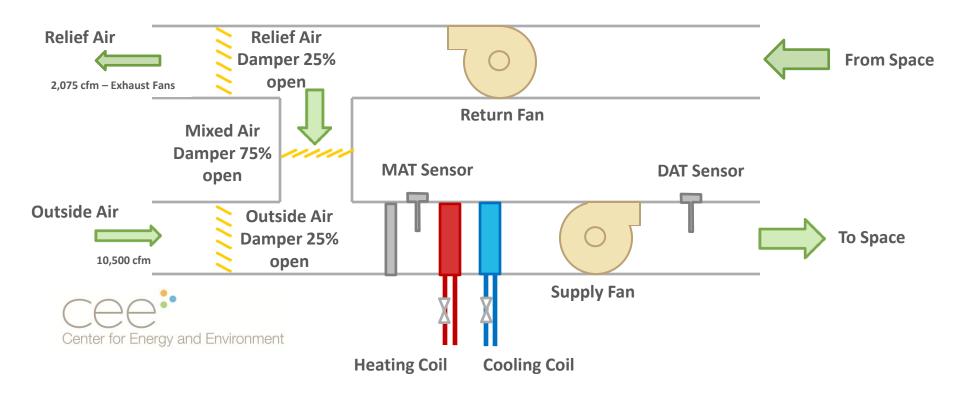
Code Requirements

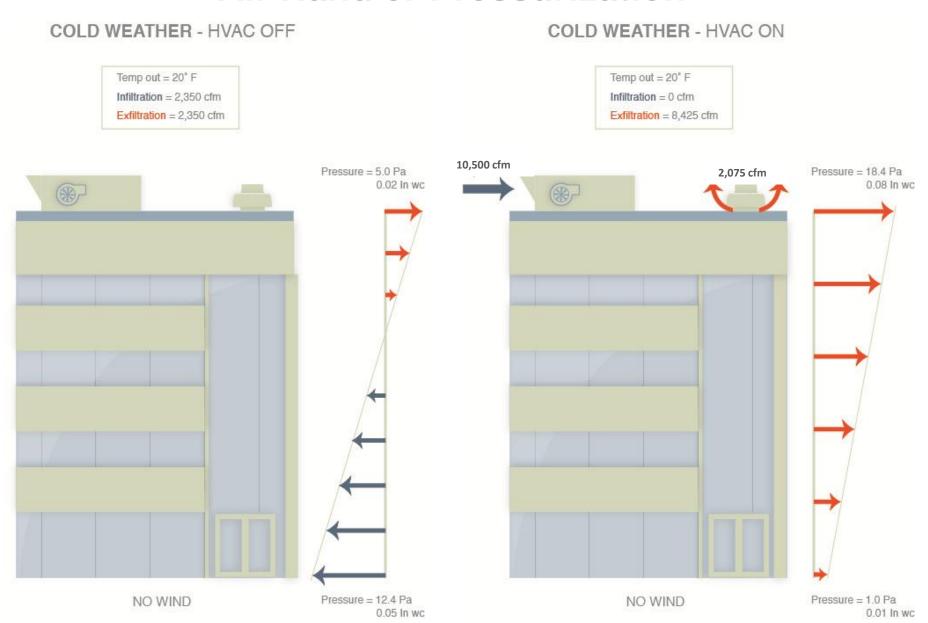
- US Army Corp Engineers = 0.25 cfm/ft²
 - Tested over 300 buildings
 - \circ Average = 0.16 cfm/ft²
- IECC 2012 (7 states) whole building compliance path = 0.40 cfm/ft²
- Washington State: Buildings over five stories require a whole building test, but do not have to pass a prescribed value.
- <u>City of Seattle</u>: All buildings require a whole building test, but do not have to pass a prescribed value.

Why do we care about building air leakage?


- HVAC systems pressurize buildings to eliminate infiltration – don't they?
- When HVAC is off => air infiltration
- Pressurization not always effective or implemented correctly
- NIST/Persily tracer gas results infiltration can be significant

4 Story 60,000sf Office Building: leakage = 27,000 cfm@75Pa, 0.5 cfm@75/ft²

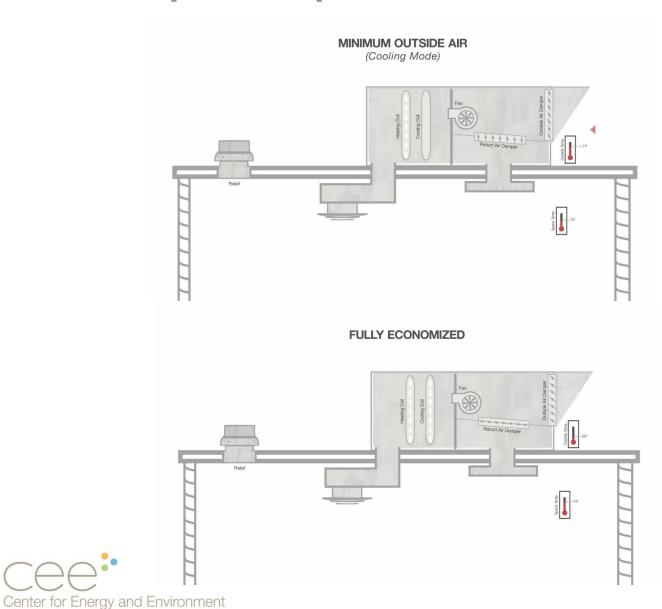

Roof Top Unit Operation



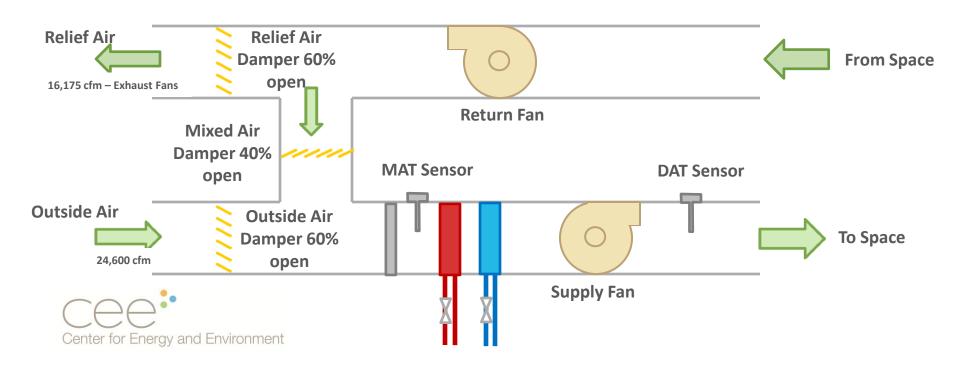
Single-zone Constant Volume AHU

- Supply and Return Fans turn on/off by schedule
- Outside Air Damper has a minimum position setpoint for ventilation
- Relief Damper controls air exhausted from the building

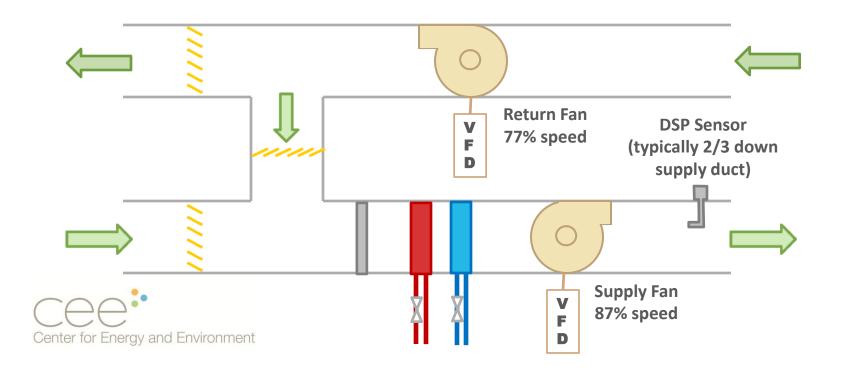
4 Story 60,000sf Office Building: leakage = 27,000 cfm@75Pa, 0.5 cfm@75/ft²

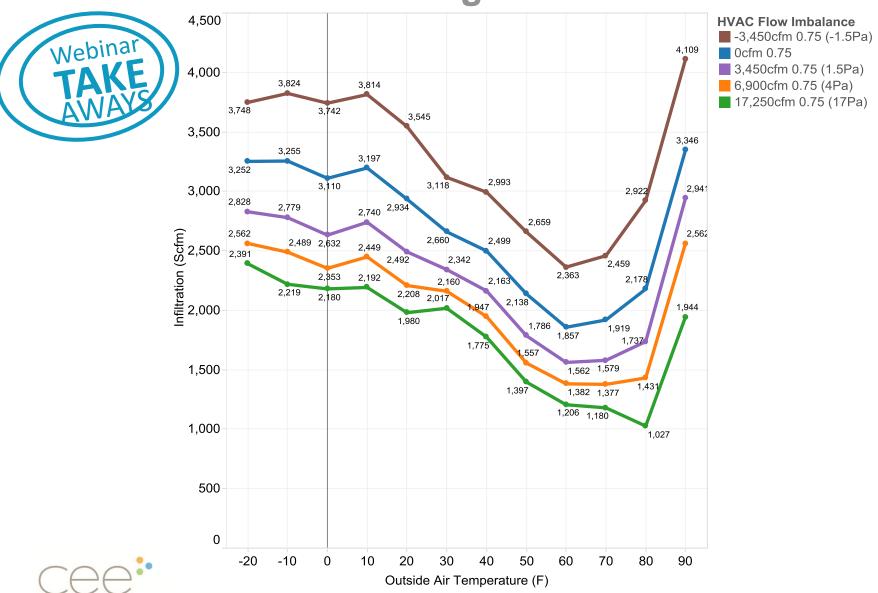


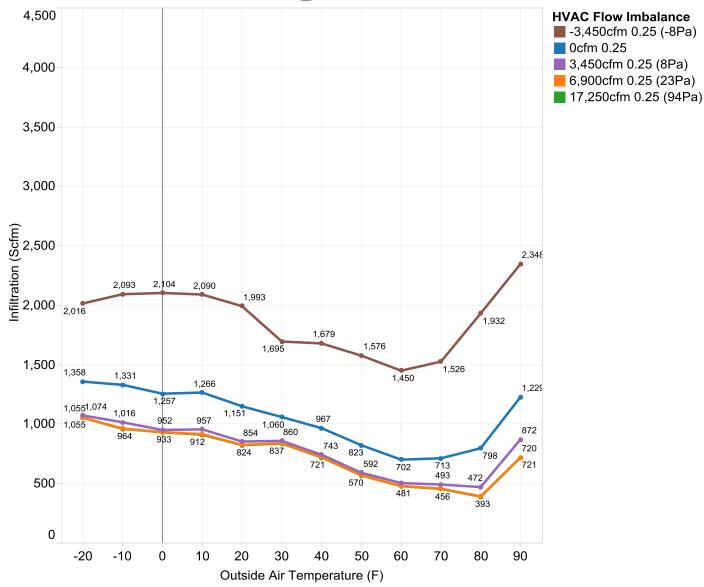
4 Story 60,000sf Office Building: leakage = 27,000 cfm@75Pa, 0.5 cfm@75/ft²


4 Story 60,000sf Office Building: leakage = 27,000 cfm@75Pa, 0.5 cfm@75/ft²

Roof Top Unit Operation


Single-zone Constant Volume AHU


- Economizer operation
 - Mild weather when building needs cooling
 - Open outdoor air dampers, exhaust dampers follow;
 OA EA stays the same?


Variable Volume AHU with VAV Boxes

- Supply and Return Fans
 - Supply fan VFD modulates to meet Duct Static Pressure (DSP) Setpoint
 - Return fan lags supply fan to maintain positive pressure

Center for Energy and Environment

Center for Energy and Environment

Envelope Leakage= 0.75 cfm@75Pa/ft²

	HVAC Flow Imbalance, OA - EA (cfm)					
	-3,450	0	3,450	6,900	17,250	
Avg Infil. (cfm)	2,986	2,444	2,077	1,849	1,652	
Avg Infil. (ach)	0.25	0.20	0.17	0.15	0.14	
Heat Load (therms/yr)	7,264	6,114	5,260	4,732	4,308	
% Space Heating	19%	16%	14%	12%	11%	
Cost (\$)	\$4,213	\$3,546	\$3,051	\$2,745	\$2,499	

Envelope Leakage= 0.75 cfm@75Pa/ft²

	HVAC Flow Imbalance, OA - EA (cfm)					
	-3,450	0	3,450	6,900	17,250	
Avg Infil. (cfm)	2,986	2,444	2,077	1,849	1,652	
Avg Infil. (ach)	0.25	0.20	0.17	0.15	0.14	
Heat Load (therms/yr)	7,264	6,114	5,260	4,732	4,308	
% Space Heating	19%	16%	14%	12%	11%	
Cost (\$)	\$4,213	\$3,546	\$3,051	\$2,745	\$2,499	

Envelope Leakage= 0.25 cfm@75Pa/ft²

	HVAC Flow Imbalance, OA - EA (cfm)					
	-3,450	0	3,450	6,900	17,250	
Avg Infil. (cfm)	1,725	951	708	678	676	
Avg Infil. (ach)	0.14	0.08	0.06	0.06	0.06	
Heat Load (therms/yr)	4,004	2,439	1,875	1,813	1,809	
% Space Heating	10%	6%	5%	5%	5%	
Cost (\$)	\$2,322	\$1,414	\$1,087	\$1,052	\$1,049	

What about Energy Recovery Ventilators?

 Why not run the exhaust air through an ERV to recovery some of that energy instead of forcing it out through the envelope?

 Need a tighter envelope to accomplish ERVs with infiltration control

Air Leakage Test Video

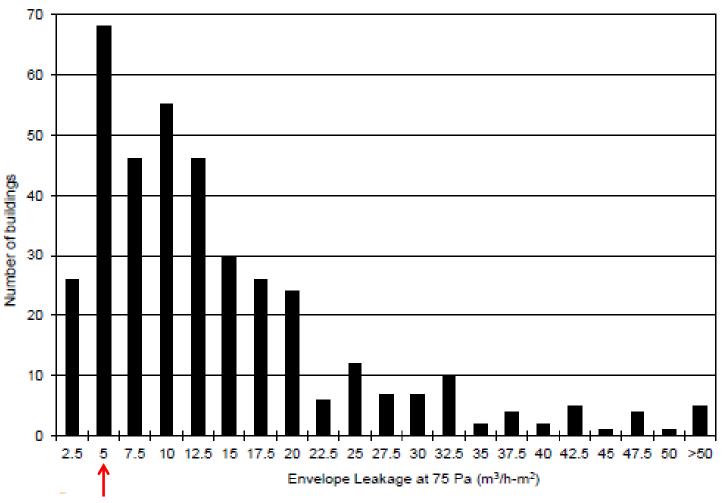
This slide contains a 5 minute video that provides an overview of the whole building air leakage test process.

The video can be found on CEE's web site at:

www.mncee.org/Innovation-Exchange/Projects/Current/Capturing-energy-Savings-from-Large-Building-Envel/

How leaky or tight are US buildings?

- Test results compiled by the National Institute of Standards and Technology (NIST) – Emmerich and Persily – over the past 15 years
- 387 commercial and institutional buildings
- NOT RANDOM: researchers, low-energy programs, private testing firms
- Used to model air infiltration energy loads and help establish leakage standards



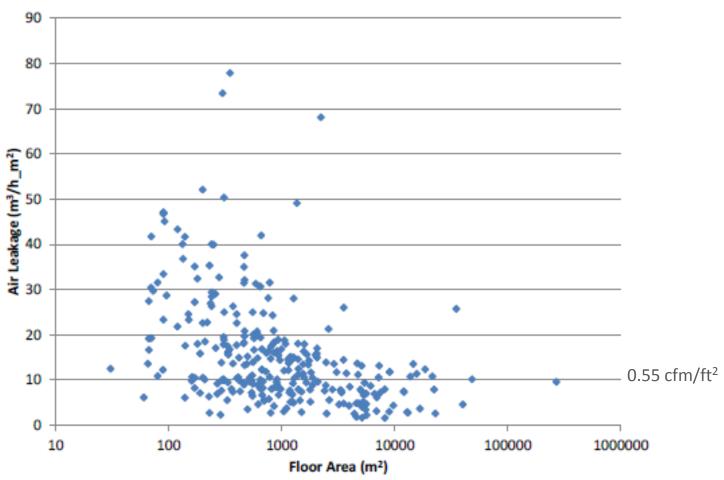
NIST Results from US whole building tests

		6-sided at 75Pa (cfm/ft²)				
Dataset	Qty	Mean	Std Dev	Min	Max	
Efficiency Vermont	36	0.35	0.38	0.03	1.78	
ASHRAE RP 1478	16	0.29	0.20	0.06	0.75	
Washington	18	0.40	0.15	0.11	0.64	
Other VT/NH	79	0.54	0.40	0.05	1.73	
Other	10	0.30	0.23	0.09	0.75	
All new data	159	0.36	0.30 0.03		1.78	
All previous data	228	0.92	.92 0.70 0.09 4.2			
All Buildings	387	0.72	0.63	0.03	4.28	
		<u> </u>				
USACE & Navy	300	0.16	USACE St	d = 0.25		

NIST Results: Frequency Histogram

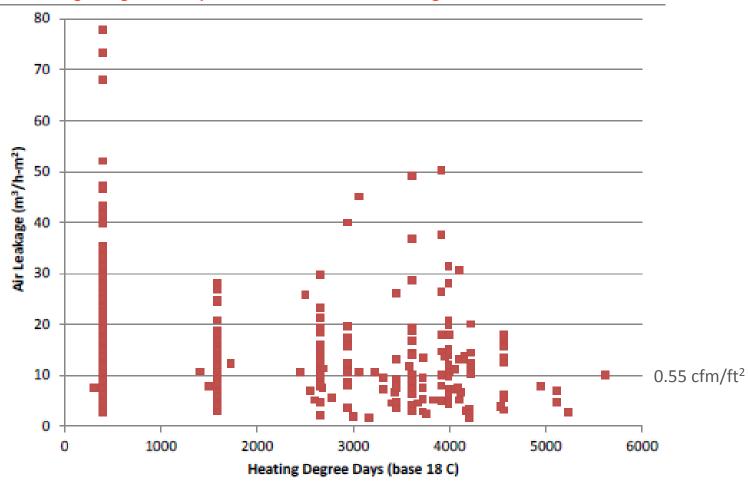
NIST Results: Weak Trends

 Tighter – office, education, public assembly & long-term health care

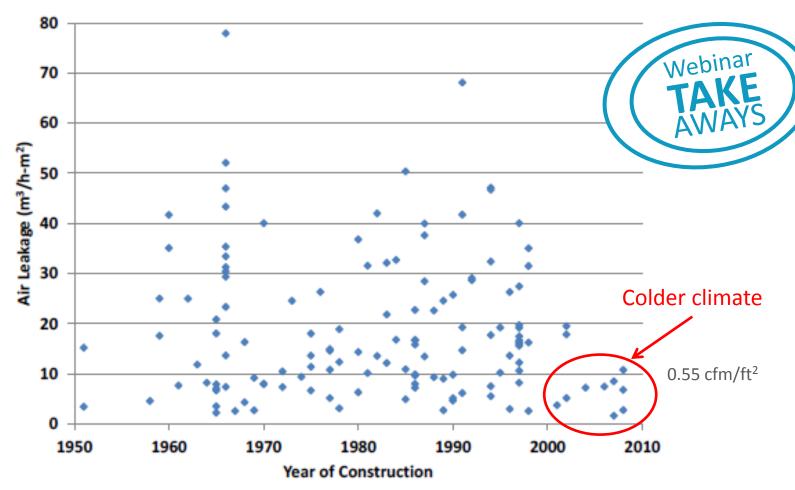

Leakier – retail, restaurants, industrial

 Leakier exterior walls – frame, masonry/metal, & frame/masonry

NIST Results: Effect of Building Size


Buildings > 54,000ft² twice as tight

NIST Results: Effect of Climate

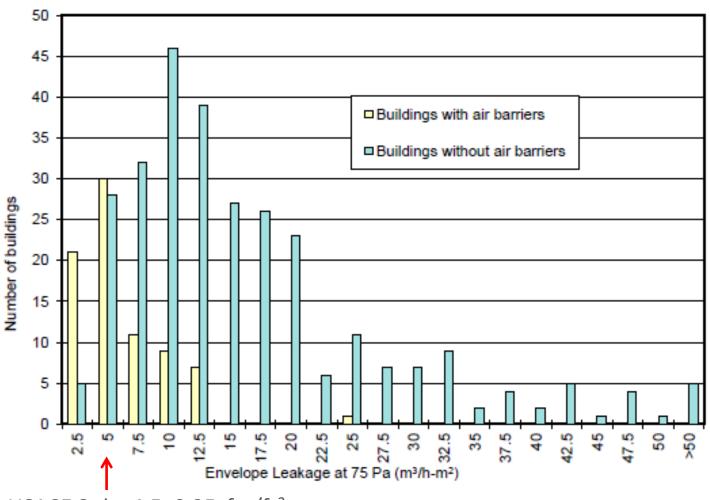

Heating degree days > 3,600 one third tighter

NIST Results: Effect of Age

138 buildings with no air barriers built since 1950 - no strong trend

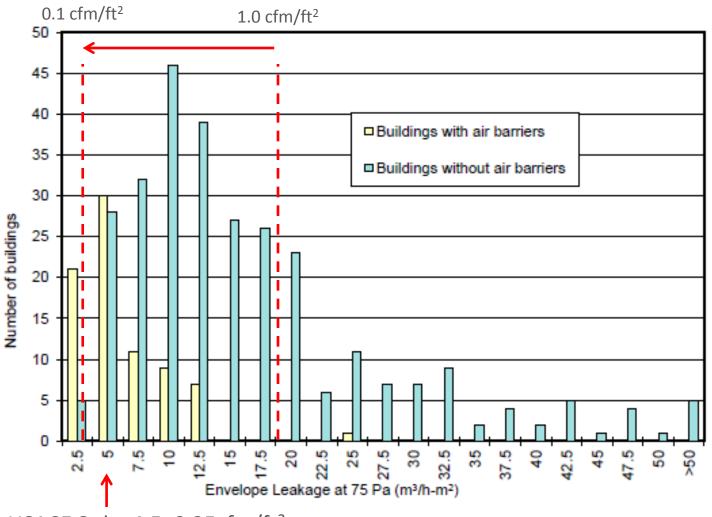
NIST Results: LEED Buildings

• 23 LEED buildings; average = 0.29 cfm/ft²


Significantly tighter than average of other 364 buildings

 Slightly (5%) leakier than other 56 buildings with an air barrier

NIST Results: Effect of Air Barrier


Buildings with air barrier are 70% tighter

USACE Std = 4.5, 0.25cfm/ft²

NIST Results: Effect of Air Barrier

Compare no air barrier to tight construction

USACE Std = 4.5, 0.25cfm/ft²

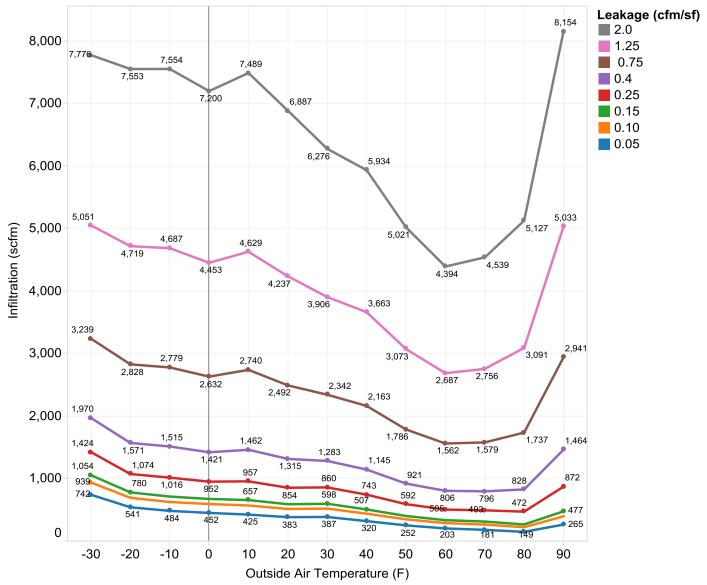
NIST Building Infiltration & Energy Models

- Multizone infiltration and energy model
- Compared air infiltration and energy use for:
 - "typical" no air barrier reported leakage (4x USACE)
 - "target" good practice (40% below USACE)
- Five cities in different climate zones

NIST Building Infiltration & Energy Models

Two-Story, 24,000ft² Office Building

g


City	Annual Average Baseline	verage Infiltration (h ⁻¹) Target		Gas Savings		Savings	Total Savings
Bismarck	0.22	0.05	\$1,854	42%	\$1,340	26%	\$3,195
Minneapolis	0.23	0.05	\$1,872	43%	\$1,811	33%	\$3,683
St. Louis	0.26	0.04	\$1,460	57%	\$1,555	28%	\$3,016
Phoenix	0.17	0.02	\$124	77%	\$620	9%	\$745
Miami	0.26	0.03	\$0	0%	\$769	10%	\$769

One-Story, 12,000ft² Retail Building

City	Annual Average Infiltration (h ⁻¹) Baseline Target		Gas Savings		Electrical Savings		Total Savings
Bismarck	0.20	0.02	\$1,835	26 %	\$33	2 %	\$1,869
Minneapolis	0.22	0.02	\$1,908	28 %	\$364	18 %	\$2,272
St. Louis	0.24	0.01	\$1,450	38 %	\$298	9 %	\$1,748
Phoenix	0.13	0.00	\$176	64 %	\$992	14 %	\$1,169
Miami	0.21	0.01	\$6	98 %	\$1,224	14 %	\$1,231

Emmerich and Persily 2013

Model Infiltration: Range of Envelope Leakage

Model Infiltration: Range of Envelope Leakage

1 Story 60,560ft² Elementary School: HVAC Imbalance = 3,450 cfm

	Building Envelope Leakage (cfm@75/ft²)							
	0.05	0.1	0.15	0.25	0.4	0.75	1.25	2
Avg Infil. (cfm)	305	417	481	708	1,094	2,077	3,539	5,751
Avg Infil. (ach)	0.03	0.03	0.04	0.06	0.09	0.17	0.29	0.47
Heat Load (therms/yr)	855	1,139	1,305	1,875	2,832	5,260	8,867	14,322
% Space Heating	2%	3%	3%	5%	7%	14%	23%	37%
Cost (\$)	\$496	\$661	\$757	\$1,087	\$1,643	\$3,051	\$5,143	\$8,306

NIST office building model:

 $1.0 \text{ cfm/ft}^2 = 0.23 \text{ ach}$

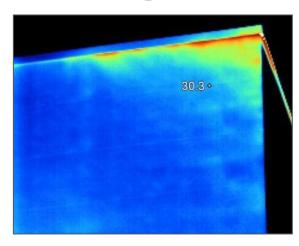
 $0.1cfm/ft^2 = 0.05 ach$

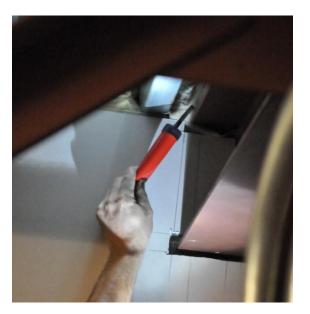
ASHRAE Research: selection criteria

- Goal: 24 to 36 existing mid- and high-rise buildings (16 Completed)
- Non-residential
- 4 stories or higher
- Sustainability certification (14 of 16)
- Built after the year 2000
- Climate zones 2-7 (All 6 Zones Represented)

ASHRAE Research Project: leakage results

- Average = 0.29 cfm/ft²
- Green building = 0.32 cfm/ft²; others = 0.22 cfm/ft²
- Air barrier specified and envelope expert = 0.13 cfm/ft²; others = 0.39 cfm/ft²
- Unsealing HVAC penetrations increased leakage by average of 27% with range of 2% to 51%




ASHRAE Research Project: leakage sites

- Roof/wall intersection
- Soffits and overhangs
- Mechanical rooms, garages, basements, loading docks
- Roll-up and overhead doors

Minnesota Leakage Study: work scope

- Conduct investigations on 25 buildings: floor area of 25,000 to 500,000 ft²
- Air seal and pre/post leakage tests on X 7 buildings
- Continuous building pressure and HVAC operation data for 50 to 200 days
- CONTAM pre/post air flow models that include mechanical system leakage and pressure effects
- Compute infiltration/energy reductions

Building Characteristics

	Floor	#	Constr	
Building ID	Area (sf)	Stories	Year	Wall Type
Elem School TF	59,558	1	1951	Masonry & corrugated metal panel
Middle School	138,887	3	1936	Cast concrete w/CMU infill
Small Office	26,927	1	1998	EFIS tip up (3 walls) and CMU block
Univ Library	246,365	3	1967	Cast concrete w/CMU infill & brick ext
Elem School PS	60,968	1	1965	CMU w/brick exterior
Library/Office	55,407	1	2007	Steel studs & brick or stone cladding

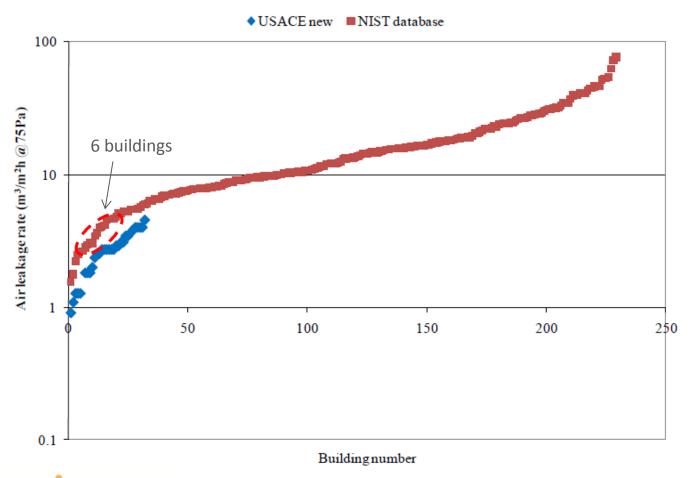
University Library 246,000sf

Small Office 27,000sf

Library/Office 55,000sf

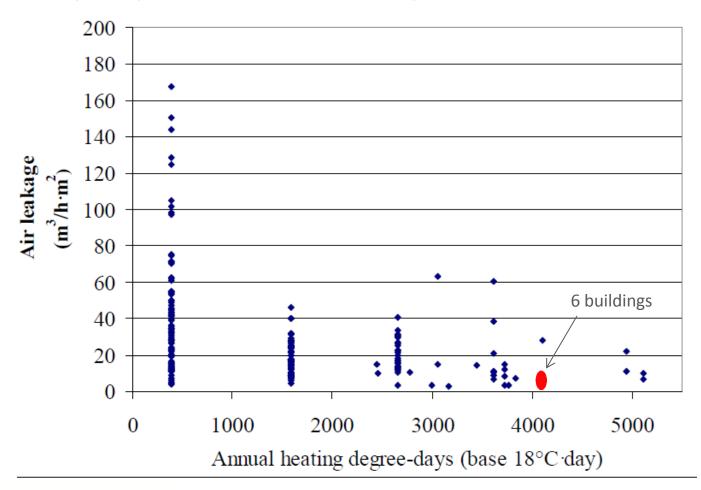
3 elementary & middle schools: 1936 to 1965 with additions 60,000 – 139,000sf

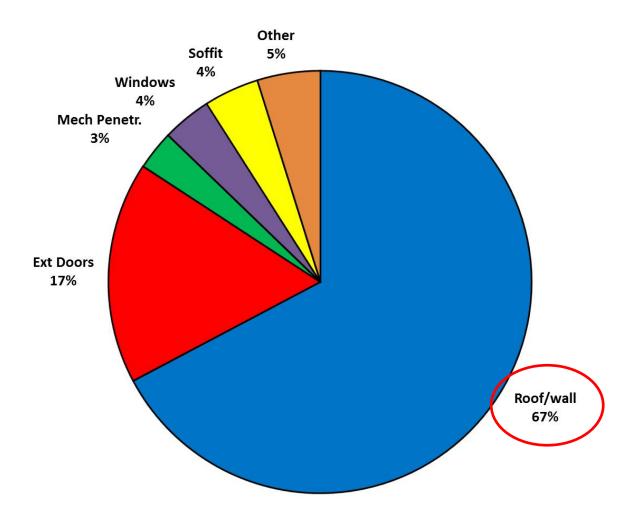
Minnesota Leakage Study: leakage results


All 7 buildings at least 25% tighter than the US Army Corp standard of 0.25 cfm/ft²

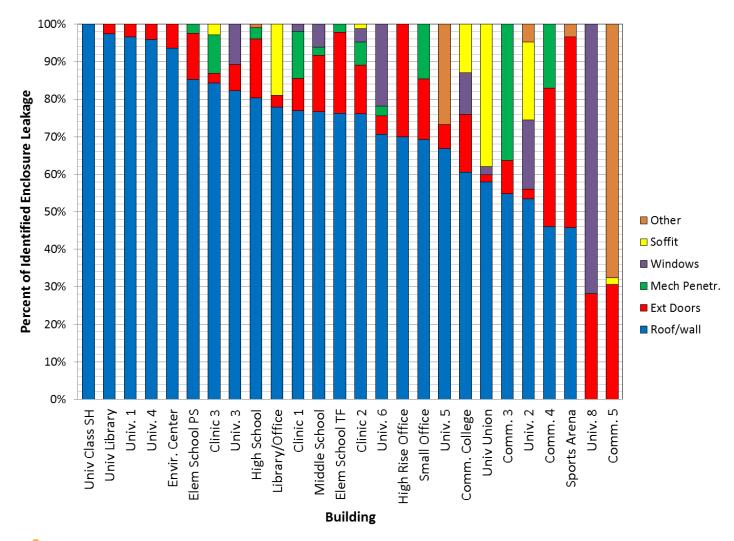
		Envelope	Air Leaka	ge at 75Pa			
	Floor	Area (ft ²)		6 Sides	EqLA	#	Constr
Building ID	Area (ft ²)	6 Sides ²	(cfm)	(cfm/ft ²)	(ft^2)	Stories	Year
Elem School TF	59,558		27,425	0.19	15.2	1	1951
Comm. College	95,000	164,844	28,881	0.18	17.2	2	1996
Middle School	138,887	208,733	32,818	0.16	16.6	3	1936
Small Office	26,927	65,267	9,177	0.14	4.6	1	1998
Univ Library	246,365	171,712	23,356	0.14	13.1	3	1967
Elem School PS	60,968	145,766	17,602	0.12	9.6	1	1965
Library/Office	55,407	139,965	12,321	0.09	6.9	1	2007
Minimum	26,927	65,267	9,177	0.09	4.6		
Mean	97,587	149,038	21,654	0.14	11.9		
Median	60,968	146,977	23,356	0.14	13.1		
Maximum	246,365	208,733	32,818	0.19	17.2		

Comparison to US Buildings

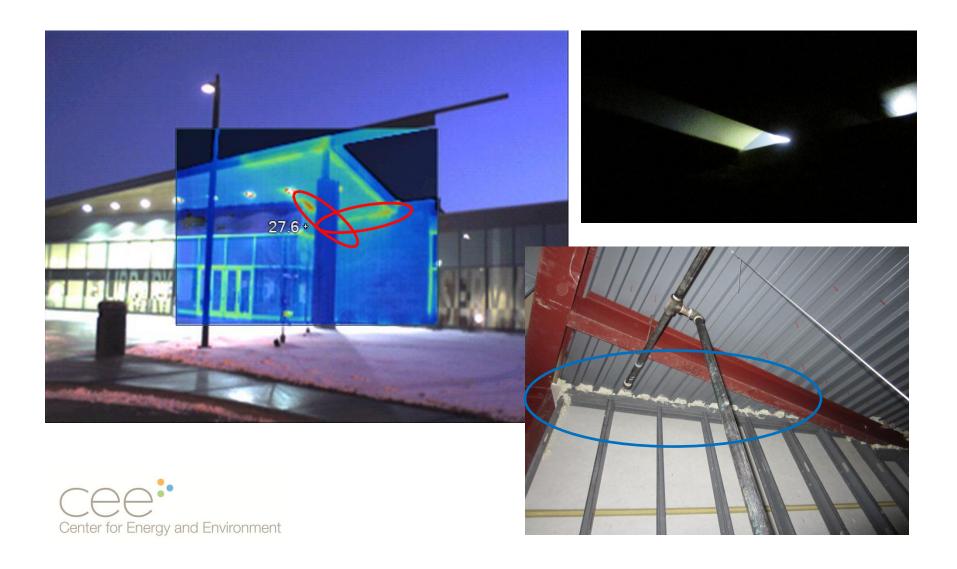

7 building average is 85% less than the US average, slightly less than US Army Corp average

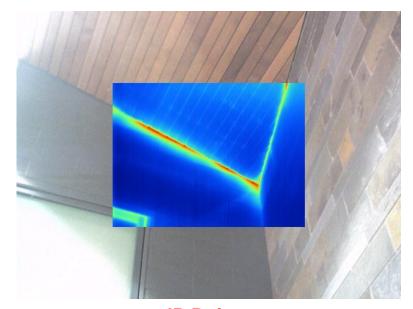

Tighter Buildings in Colder Climates?

7 building average is 85% less than the US average

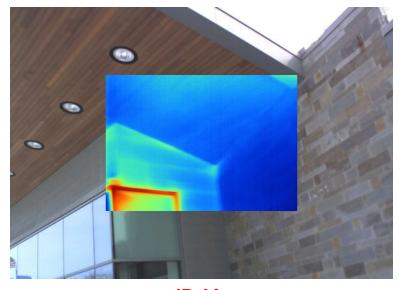


Where Were the Leaks?


Where Were the Leaks?

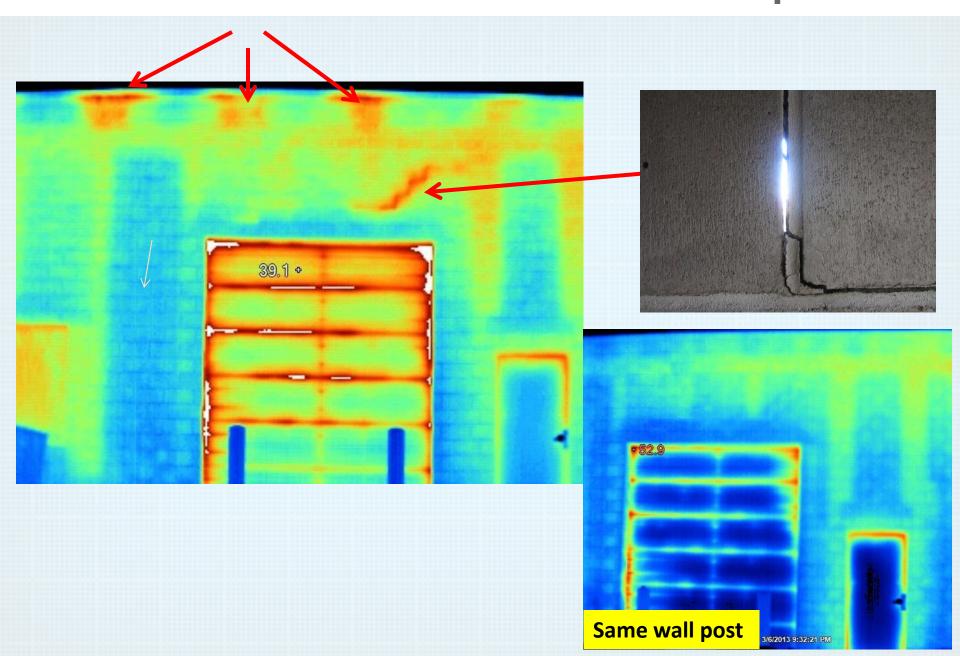

Air Sealing Focused on Roof/wall

Canopy leakage at exterior wall



Air Sealing Focused on Roof/wall

Canopy leakage at exterior wall

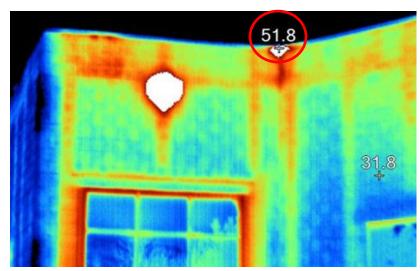

IR Before

IR After

Where to look: IR view of rear CMU wall pre

Look inside: 10 beam pockets

Closed cell foam fill, don't create fire hazard


See ICC ES 3228 approvals.
maintain exhaust on work
space adj. to occupied office
Sample MDI < 5ppb
Manage exposure

¾ cu ft foam block max temp rise check for building official and owner before injection.

Don't start a fire

Beam Pockets

IR Before

IR After

Air Sealing Reduction

"Tight" buildings tightened by 9%

	_eakage at	Air Leakage at 75Pa						
	6 Sides	(cf	m)	Redu	ction			
Building ID	(cfm/ft ²)	Pre	Post	(cfm)	(%)			
Elem School TF	0.19	27,425	22,699	4,726	17%			
Comm. College	0.18	28,881	28,133	748	3%			
Middle School	0.16	32,818	28,872	3,947	12%			
Small Office	0.14	9,177	8,470	708	8%			
Univ Library	0.14	23,356	21,963	1,392	6%			
Elem School PS	0.12	17,602	15,837	1,765	10%			
Library/Office	0.09	12,321	11,369	953	8%			
Minimum	0.09	9,177	8,470	708	3%			
Mean	0.14	21,654	19,620	2,034	9%			
Median	0.14	23,356	21,963	1,392	8%			
Maximum	0.19	32,818	28,872	4,726	17%			

Air sealing work confirmed by visual, smoke puffer, and IR inspections

Air Sealing Reduction

More expensive to seal tighter buildings?

	Air Sealing Cost							
Building ID	Total	(\$/0	CFM75)	$(\$/\mathrm{ft}^2)$				
Elem School TF	\$ 18,550	\$	3.92	\$ 6,822				
Comm. College	\$ 17,845	\$	23.86	\$ 17,273				
Middle School	\$ 23,700	\$	6.00	\$ 8,434				
Small Office	\$ 4,768	\$	6.73	\$ 10,058				
Univ Library	\$ 15,918	\$	11.43	\$ 65,159				
Elem School PS	\$ 26,700	\$	15.13	\$ 38,132				
Library/Office	\$ 1,152	\$	1.21	\$ 1,297				
Median	\$ 17,845	\$	6.73	\$ 10,058				

Air Sealing Reduction

Contractor estimates better for leakier buildings?

	Leakage Area				Sea	aled Area ((sf)
	EqLA	(ft ²)	Redu	ction	Contractor		
Building ID	Pre	Post	(ft^2)	(%)	Roof/Wall	Total	Meas/Est
Elem School TF	15.2	12.5	2.7	18%	8.84	11.49	0.31
Comm. College	17.2	16.2	1.0	6%	5.47	5.47	0.19
Middle School	16.6	13.8	2.8	17%	11.73	14.98	0.24
Small Office	4.6	4.1	0.5	10%			
Univ Library	13.1	12.8	0.2	2%			
Elem School PS	9.6	8.9	0.7	7%	14.45	16.94	0.05
Library/Office	6.9	6.0	0.9	13%		1	

Building Leakage < Estimated sealing

Air Sealing Energy Savings

Modeled Infiltration and Energy Savings

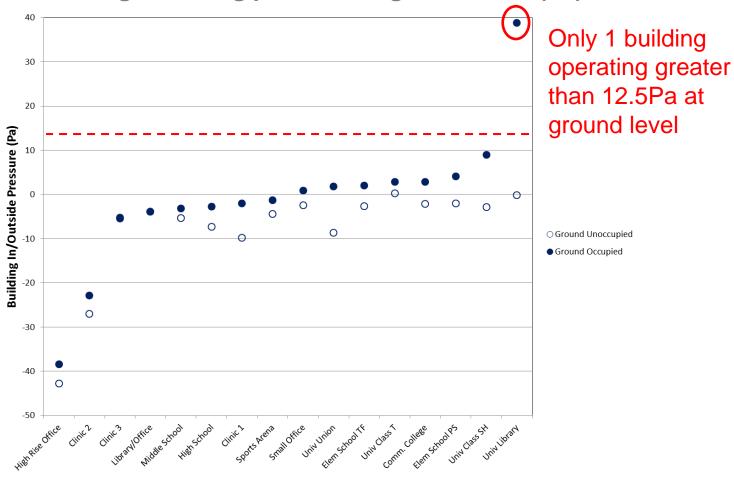
•	37						
	Space Heat Gas Use (Therms/yr)						
Building ID	Total	Infiltration	Infil/Total				
Elem School TF	40,224	2,389	6%				
Comm. College	32,095	3,402	11%				
Middle School	44,469	7,779	17%				
Small Office		684					
Univ Library		192					
Elem School PS	26,563	2,387	9%				
Library/Office	18,108	2,829	16%				
Minimum			6%				
Mean			12%				
Median			11%				
Maximum			17%				

Air Sealing Energy Savings

Modeled Infiltration and Energy Savings

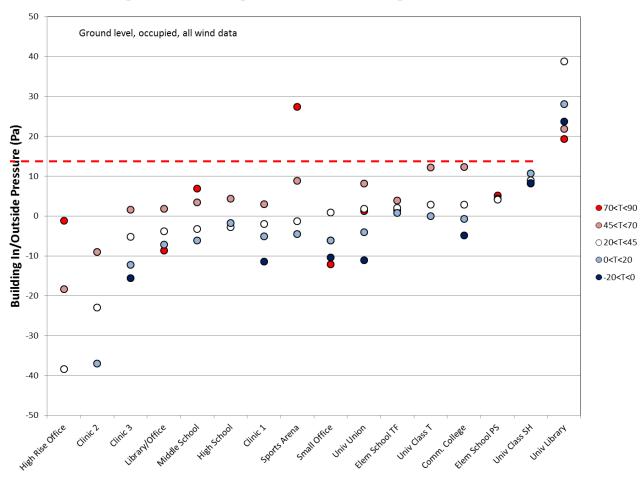
•									
	Space Hea	t Gas Use (Therms/yr)	Gas Savings		Avg	Leakage		
Building ID	Total	Infiltration	Infil/Total	(Therm/yr)	(\$/yr)	Infil (cfm)	Red. (%)		
Elem School TF	40,224	2,389	6%	549	\$319	1,296	17%		
Comm. College	32,095	3,402	11%	174	\$105	1,730	3%		
Middle School	44,469	7,779	17%	905	\$525	4,330	12%		
Small Office		684		39	\$24	964	8%		
Univ Library		192		11	\$6	249	6%		
Elem School PS	26,563	2,387	9%	223	\$129	1,453	10%		
Library/Office	18,108	2,829	16%	107	\$68	1,477	8%		
Minimum			6%	11	\$6	249	3%		
Mean			12%	287	\$168	1,643	9%		
Median			11%	174	\$105	1,453	8%		
Maximum			17%	905	\$525	4,330	17%		

Air Sealing Energy Savings

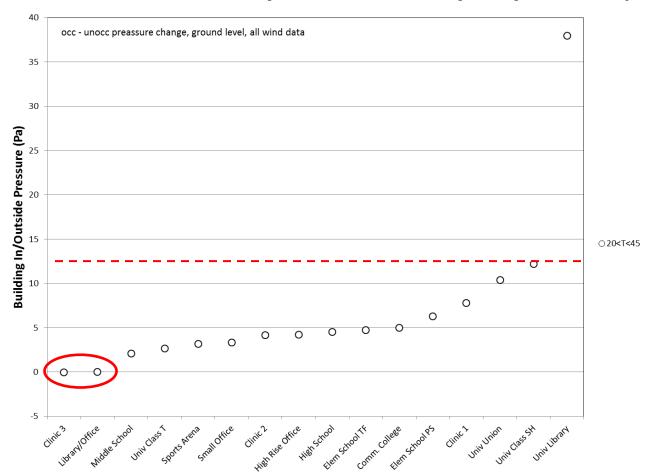

Modeled Infiltration and Energy Savings

_								
	Gas S	avings	Electric Savings		Total	Leakage		Payback
Building ID	(Therm/yr)	(\$/yr)	(kWh/yr)	(\$/yr)	(\$/yr)	Red. (%)	Cost (\$)	(years)
Elem School TF	549	\$319	1,034	\$101	\$419	17%	\$18,550	44
Comm. College	174	\$105	232	\$23	\$127	3%	\$17,845	140
Middle School	905	\$525	2,523	\$246	\$771	12%	\$23,700	31
Small Office	39	\$24	18	\$2	\$26	8%	\$4,768	182
Univ Library	11	\$6	79	\$0	\$6	6%	\$15,918	2,872
Elem School PS	223	\$129	487	\$47	\$177	10%	\$26,700	151
Library/Office	107	\$68	-232	-\$24	\$44	8%	\$1,152	26
Minimum	11	\$6	-232	-\$24	\$6	3%	\$1,152	26
Mean	287	\$168	592	\$56	\$224	9%	\$15,519	492
Median	174	\$105	232	\$23	\$127	8%	\$17,845	140
Maximum	905	\$525	2,523	\$246	\$771	17%	\$26,700	2,872

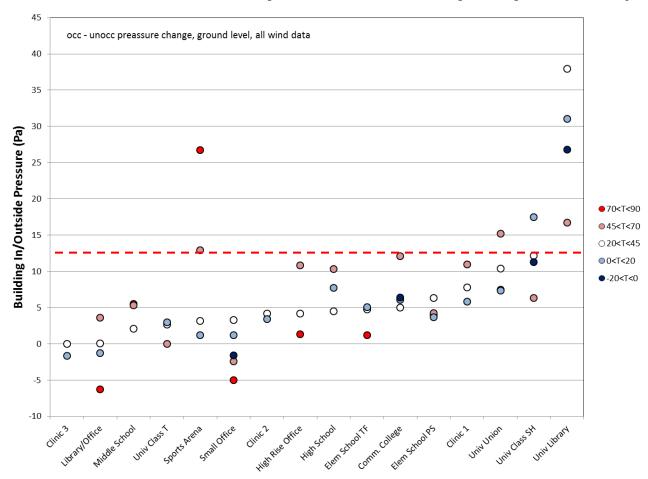
Able to seal "tight" buildings, but work was not cost effective



Average building pressure at ground level (Pa)



Average building pressure at ground level (Pa)

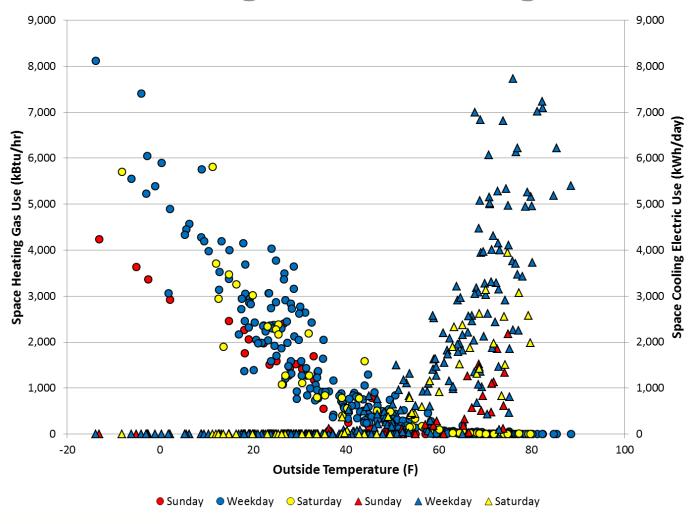

Difference between occupied and unoccupied pressure (Pa)

Pressure increase for almost all buildings

Difference between occupied and unoccupied pressure (Pa)

Computing Savings For Your Project

- Can we divide cfm50 by 20 to get savings?
- It is not that simple for larger buildings
- HVAC pressurization effects savings
- Greater savings for taller buildings, open terrain, distance from neutral level, floor compartmentalization
- Internal heat gain = cooling more important
- Developing spreadsheets for savings calculations


Computing Savings For Your Project

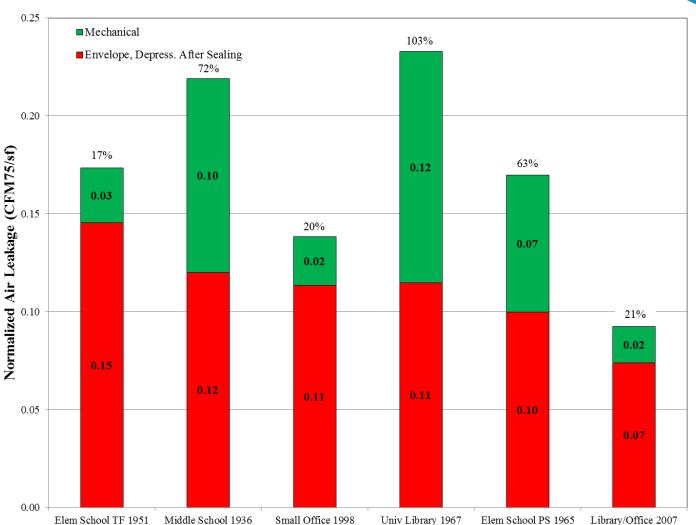
Three Story Commercial Building

- Typical pressurization = 10% less
 6Pa = 35% less
 12.5Pa = 60% less
- 1 story = 40% less;
 5 story = 30% more;
 10 story = 80% more
- Urban wind shielding = 35% less
 Open wind shielding = 70% more

Office Building Model: Heating & Cooling

Mechanical System Leakage

Part of building envelope when not operating



Mechanical System Leakage

Part of building envelope when not operating

Mean 49% 0.06 cfm/ft² (6 sides)

Range 17% to 103% 0.02 to 0.12 cfm/ft²

Two most recently built (1008

Two most recently built (1998 and 2007) had low leakage

Summary

- Tight buildings: 85% tighter than U.S. average & at least 25% below Army Corp standard – due to cold climate location?
- Sealing = 9% reduction, more reduction and less expensive for leakier buildings
- Contractor over-estimated sealing area
- Long paybacks for air sealing work
- Including mechanical systems increased leakage by 17 to 103% (0.02 to 0.12 cfm/ft²)
- HVAC systems tend to pressurize buildings.
 Not as great as typical design practice

When Is Air Sealing Worthwhile?

- You can see out the envelope gaps & leak is accessible
- Taller (5+ stories) in open terrain
- Reported problem that is likely to be caused by air leakage
- You live in portion of US that hasn't had to worry about infiltration

Other Opportunities

- Older/leaky dampers (cost?)
- Building pressure control

