

=

Welcome

Conservation Applied Research & Development (CARD) Webinar

December 19, 2023

Air-to-Water Heat Pumps: A Cold Climate Solution for High-Efficiency Cooling, Space Heating, and Water Heating

Webinar Basics

Air-to-Water Heat Pumps: A Cold Climate Solution for High-Efficiency Cooling, Space Heating, and Water Heating

Lindsay Anderson Utility Energy Conservation Research Planner MN Department of Commerce lindsay.anderson@state.mn.us

Lauren Sweeney Principal Energy Planner MN Department of Commerce Lauren.sweeney@state.mn.us Ę

Air-to-Water Heat Pumps: A Cold Climate Solution for High-Efficiency Cooling, Space Heating, and Water Heating cont.

Center for Energy and Environment

Samantha Hill, Ph.D. Research Engineer Center for Energy and Environment <u>shill@mncee.org</u>

Ranal Tudawe Research Engineer Center for Energy and Environment rtudawe@mncee.org

Josh Quinnell, Ph.D. Senior Research Scientist Center for Energy and Environment jquinnell@mncee.org

Minnesota Applied Research & Development Fund

- Purpose to help Minnesota utilities achieve energy savings goal by:
 - Identifying new technologies or strategies to maximize energy savings;
 - Improving effectiveness of energy conservation programs;
 - Documenting CO₂ reductions from energy conservation programs.

Minnesota Statutes §216B.241, Subd. 1e

Utility may reach its energy savings goal

- Directly through its Energy Conservation and Optimization (ECO) program
- Indirectly through energy codes, appliance standards, behavior, and other market transformation programs

CARD RFP Spending by Sector thru FY2020

RFP Summary

- 12 Funding Cycles
- 513 proposals
- 143 projects funded
- \$31.2 million in research

December 19th, 2023

AIR-TO-WATER HEAT PUMPS

The cold climate solution for high-efficiency cooling, space heating, and water heating

Samantha Hill, PhD, Ranal Tudawe, Josh Quinnell, PhD

Agenda

- What is an Air-to-Water Heat Pump?
- Types of AWHPs
- Field Study Background
- Performance Results
- Energy Savings, Costs, and Payback
- Conclusions, Barriers, and Opportunities

What is an Air-to-Water Heat Pump?

1 I

AWHPs are air source heat pumps with hydronic distribution.

A Typical ASHP Outdoor Indoor

Refrigerant to Air Heat Exchanger Refrigerant to Air Heat Exchanger

F

A Typical AWHP

F

Hydronic Distribution: Pros and Cons

- Potential benefits vs forced-air:
 - Higher distribution efficiency
 - Lower supply temperatures possible for certain emitters
 - Diverse emitter configurations
 - Zone control
 - DHW load integration
 - Thermal storage integration

- Potential disadvantages:
 - Additional heat exchanger(s)
 - Cold climates require antifreeze
 - Antifreeze reduces heat transfer efficiency
 - Retrofit challenges may vary

Types of AWHPs

- Dozens of models and configurations are available for virtually any Minnesota residential application.
- Just like ASHPs, AWHPs primarily function as space heating systems, and many also provide cooling.
- When not in heating or cooling, some AWHPs can also provide domestic hot water (DHW) service.

Source: ArcticHeat

Source: SpacePak

Third-Party Split

Source: Electro Industries

Field Study Background

Ę

• AWHP in MN: A Brand-New Technology?

- Air source heat pumps are growing in MN
 - Previous research demonstrates cold climate, variable speed ASHPs work in MN's climate (IECC zones 6 & 7) but may need auxiliary heat
 - Natural gas remains the dominant heating fuel
- AWHPs currently have almost no market share in MN
- Hydronic heating is mostly found in two types of single-family MN homes:
 - SF homes built around 1900-1920s with panel radiators
 - SF homes built since 2000 with in-floor heat

Case Study Scope: AWHPs in MN

- Goal: Characterize available AWHP systems and identify best AWHP configurations to serve cold climate MN homes
- Scope: Field monitor four single-family homes retrofit with AWHPs to evaluate energy savings, costs, and performance
- **Timeline:** Installations occurred late 2021 to early 2022 and monitoring lasted through summer 2023.

Field Study Site Summary

- Sites 1 & 2: Third Party Split with in-floor heat
- Site 4: Monobloc with in-floor heat and hydronic coil on air handler
- Site 3: Monobloc with in-floor heat, hydronic coil, and domestic hot water (DHW) preheating tank
- Retrofit installations displacing pre-existing electric boilers
- Installed systems include electric resistance auxiliary boilers
 - Aux boiler is downstream of HP: they can operate simultaneously
- Pre-existing thermostats initially left in place
- Primary emitter is pre-existing in-slab concrete floor heat
 - This emitter can deliver majority of heating load at supply temperatures < 110°F
 - Older MN homes' panel radiators are undersized for a drop-in AWHP supply temps

=

Field Site System Information

Site	City	Home Area (sq. ft.)	Stories	AWHP Model(s)	Emitters	Auxiliary Heat
1	Foley	3,200	1	NorAire EBH-5-020 and 5-ton Bosch BOVA ODU	In-floor heat	Electric resistance auxiliary boiler, woodstove
2	Garfield	2,600	1	NorAire EBH-5-020 and 5-ton Bosch BOVA ODU	In-floor heat	Electric resistance auxiliary boiler, propane fireplace
3	Faribault	2,600	1 + walkout	Enertech Advantage EAV060 with IDU and Turbomax indirect water heater	Lower level: In-floor heat Upper level: central forced AH with hydronic coil DHW: AWHP fed preheater	Electric resistance auxiliary boiler, propane furnace
4	Garfield	4,000	1 + finished basement	Enertech Advantage EAV060 with IDU	Lower level: In-floor heat Upper level: central forced air with hydronic coil	Electric resistance auxiliary boiler, propane furnace, two propane fireplaces

Indoor Unit

Outdoor Unit

Outdoor

€

Indoor

Floor slab heat

Indoor Unit

Outdoor Unit

=

Floor slab heat Hydronic coil + AHU DHW preheat tank

X

Outdoor

Indoor

Performance Results

1 I

Heat Load – Split Systems, Daily

Site 1

0

Site 2

Boiler Yr 1

Boiler Yr 2

Heat Pump

- Boiler Yr 1 Heat Pump
- Boiler Yr 2

Hollow circles correspond to winter 1 with no controls adjustments.

Solid circles correspond to winter 2, where controls were adjusted to reduce aux heat usage.

Heat Load – Split Systems, Binned

Binned data shown only for the second winter, after controls adjustments

F

Heat Load – Monobloc Systems, Daily

=

Heat Load – Monobloc Systems, Binned

Binned data shown only for days where the AWHP was fully operational

AWHPs Increase System Heating Efficiency

Center for Energy and Environment

• AWHPs May Increase System Cooling Efficiency

=

• AWHPs Can Integrate Domestic Hot Water

Center for Energy and Environment

Energy Savings, Costs, and Payback

Ę

Energy Savings - Heating

- Energy used for space heating decreases by 27 to 50% and ranged between 16,100 and 25,100 kWh/yr
- The higher specification Enertech AWHP at sites 3 and 4 led to considerably more energy savings than the NorAire unit at sites 1 and 2

F

Energy Savings – DHW

- The monobloc AWHP at site 3 functioned as a DHW pre-heater when not supplying space heating or cooling.
- The AWHP displaced just under 30% of the domestic hot water load of 9,500 kWh to yield an annual savings of 4,100 kWh or 40%.
- This site has very large DHW loads, double that of the typical home.

DHW Energy Usage (kWh)

Center for Energy and Environment

Costs and Payback

Site	AWHP System	Total Install Costs	Incremental Cost (\$)	Cost Savings (\$/yr)	Payback Period (yr)
1	NorAire 5-Ton Third-Party Split w/ Bosch BOVA ODU	\$18,784	\$12,784	\$571	22
2	NorAire 5-Ton Third-Party Split w/ Bosch BOVA ODU	\$14,945	\$8,945	\$453	20
3	Enertech 5-Ton Monobloc	\$41,160	\$28,760	\$1,450	20
4	Enertech 5-Ton Monobloc	\$39,985	\$28,585	\$995	29

Conclusions, Barriers, and Opportunities

Ę

• Key Takeaways

- Air-to-water heat pumps are air source heat pumps.
- They are available now and can yield significant energy and bill savings supplying space heating and domestic hot water heating.
- Incremental costs are expected to decrease as the product class matures.
- Similarly, systems will continue to be improved and optimized over time.

- High-temperature emitters like cast iron radiators and older baseboard units may struggle to supply sufficient heating capacity.
- Like with any new technology, there exist significant market barriers.
- The flexibility of AWHP systems can add complexity compared to traditional ASHP installations.
- The largest opportunity is in retrofits and new homes featuring lowtemperature emitters.

Recommendations

- AWHPs should be treated like other ASHPs and similar program design strategies for overcoming barriers should be replicated for AWHPs.
- Stakeholders should advocate for standardized ratings
- Existing qualified product lists can be used for existing ASHP programs
- AWHPs should be promoted where cold climate ASHPs are beneficial but impractical due to hydronic distribution.

• Future Work

- Workforce development, program development, and standardization
- Performance evaluation with other emitters
- Controls optimization
- Improving cooling performance
- Simplifying system design
- Thermal energy storage
- Retrofits with high-temperature hydronic systems

Questions?

Air-to-Water Heat Pumps: A Cold Climate Solution for High-Efficiency Cooling, Space Heating, and Water Heating

Center for Energy and Environment

Samantha Hill, Ph.D. shill@mncee.org

Ranal Tudawe rtudawe@mncee.org

Josh Quinnell, Ph.D. jquinnell@mncee.org

Send us your questions using the Q&A panel

CARD Project Result Dissemination

- Reports, webinars, fact Sheets, guidelines & tools available online under "Resources"
- Website is currently under construction
- Final webinar recording and report typically available within a month

https://mn.gov/commerce/energy/industry-government/cip/applied-research-development/

*	(+) ▼ ♂) (Q	````````````````````````````````````
> Conserving Energy > Co	nservation R&D	
onserving Energy	Applied Research and Develo Funds projects to identify new technologies or strategies to	
Conservation Improvement Program	maximize energy savings, improve the effectiveness of energy	
onservation R&D	conservation programs, or document the carbon dioxide	CARD search
fficient Home Building	reductions from energy conservation projects.	CARD Webinars & Videos
ome Energy Guide	Background	Request for Proposals
round source near Pumps	The Next Generation Energy Act of 2007 (the Act) established	Proposals & Evaluations
	energy conservation as a primary resource for meeting	
	Minnesota's energy needs while reducing greenhouse gases	Fact Sheets, Guides & Tools
	and other harmful emissions. The Act also established a	OUESTIONS?

=

Thanks for Participating!

Upcoming CARD Webinars:

• Feb 20, 2024: LHB - Field Study of Phase Change Material (PCM) Use For Passive Thermal Regulation

Commerce Division of Energy Resources e-mail list sign-up

Lindsay Anderson | Utility Energy Conservation Research Planner lindsay.anderson@state.mn.us | 651-539-1771

Let us know how we did today!

Your Feedback Matters